Physics Equations Sheet

GCSE Additional Science / Physics
(AS1, AS2 and PH2)

<table>
<thead>
<tr>
<th>Equation</th>
<th>Description</th>
<th>Variables</th>
</tr>
</thead>
</table>
| \(a = \frac{F}{m} \) or \(F = m \times a \) | \(a \): acceleration
\(m \): mass
\(a \): acceleration | \(F \): resultant force
\(m \): mass
\(a \): acceleration |
| \(a = \frac{v - u}{t} \) | \(a \): acceleration
\(v \): final velocity
\(u \): initial velocity
\(t \): time taken | \(a \): acceleration
\(v \): final velocity
\(u \): initial velocity
\(t \): time taken |
| \(W = m \times g \) | \(W \): weight
\(m \): mass
\(g \): gravitational field strength | \(W \): weight
\(m \): mass
\(g \): gravitational field strength |
| \(F = k \times e \) | \(F \): force
\(k \): spring constant
\(e \): extension | \(F \): force
\(k \): spring constant
\(e \): extension |
| \(W = F \times d \) | \(W \): work done
\(F \): force applied
\(d \): distance moved in the direction of the force | \(W \): work done
\(F \): force applied
\(d \): distance moved in the direction of the force |
| \(P = \frac{E}{t} \) | \(P \): power
\(E \): energy transferred
\(t \): time taken | \(P \): power
\(E \): energy transferred
\(t \): time taken |
| \(E_p = m \times g \times h \) | \(E_p \): change in gravitational potential energy
\(m \): mass
\(g \): gravitational field strength
\(h \): change in height | \(E_p \): change in gravitational potential energy
\(m \): mass
\(g \): gravitational field strength
\(h \): change in height |
| \(E_k = \frac{1}{2} \times m \times v^2 \) | \(E_k \): kinetic energy
\(m \): mass
\(v \): speed | \(E_k \): kinetic energy
\(m \): mass
\(v \): speed |
| \(p = m \times v \) | \(p \): momentum
\(m \): mass
\(v \): velocity | \(p \): momentum
\(m \): mass
\(v \): velocity |
<table>
<thead>
<tr>
<th>Equation</th>
<th>Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I = \frac{Q}{t})</td>
<td>(I) current, (Q) charge, (t) time</td>
</tr>
<tr>
<td>(V = \frac{W}{Q})</td>
<td>(V) potential difference, (W) work done, (Q) charge</td>
</tr>
<tr>
<td>(V = I \times R)</td>
<td>(V) potential difference, (I) current, (R) resistance</td>
</tr>
<tr>
<td>(P = \frac{E}{t})</td>
<td>(P) power, (E) energy, (t) time</td>
</tr>
<tr>
<td>(P = I \times V)</td>
<td>(P) power, (I) current, (V) potential difference</td>
</tr>
<tr>
<td>(E = V \times Q)</td>
<td>(E) energy, (V) potential difference (Higher Tier only), (Q) charge</td>
</tr>
</tbody>
</table>