Review P2.5 Radioactive decay: uses and risks

Can you?	\odot	\bigcirc	$\overline{\mathbf{O}}$
P2.5.1 Atomic structure	<u> </u>		
Describe, recognise and draw the basic structure of an atom			
Explain how results from the Rutherford and Marsden scattering			
experiments led to the 'plum pudding' model being replaced by the nuclear			
model			
Appreciate that new evidence can cause theories to be re-evaluated			
Appreciate that, according to the nuclear model, most of the atom (and			
therefore most of any form of matter) is empty space			
Compare the relative masses and relative electric charges of protons,			
neutrons and electrons			
Describe the numbers of protons and electrons in atoms, and explain why			
they have no overall electrical charge			
Describe how atoms may lose or gain electrons to become ions			
Define 'isotope'			
Define 'atomic number'			
Define 'mass number'			
P2.5.2 Atoms and radiation			
Describe how radioactive substances randomly give out radiation from the			
nuclei of their atoms all of the time, whatever happens to them.			
Describe the origins of background radiation from rocks, cosmic rays,			
nuclear weapons tests and nuclear accidents			
Evaluate the effect of different jobs and/or locations on the level of			
background radiation and radiation dose			
Evaluate measures that can be taken to reduce exposure to nuclear			
radiations			
Identify an alpha particle, a beta particle and a gamma ray			
(HT) Write nuclear equations to show single alpha and beta decay			
Compare the properties of alpha, beta and gamma radiations in terms of			
their ionising power, penetration through materials, and their range in air			
Compare how alpha, beta and gamma radiations are affected by electric and			
magnetic fields (HT) and explain in terms of their relative mass and charge			
Describe the uses and evaluate the dangers associated with each type			
Define 'half-life' for a radioactive isotope, in terms of the number of nuclei			
of the isotope in a sample, or in terms of the count rate from a sample			
Evaluate how appropriate different radioactive sources are for different			
users, including tracers, in terms of the type of radiation and half life			